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The investigation of a fracture of cemented bodies due to the propaga- 
tion of a crack in the region of the cemented joint has an important 
practical significance. This type of fracture refers, for example, to 
the advancement of a crack originating as a result of a hydraulic dis- 
continuity and propagating along the boundary of the division between 
two strata of a rock. However, until recently, the brittle fracture of 
cemented bodies had not been investigated theoretically. 

In the theory of cracks of brittle fracture, mainly the problems of 
cracks in homogeneous solids have been considered. An account of the 
basic theory of cracks in homogeneous bodies has been given by 
Barenblatt Cd. The majority of experimental investigations are also 
concerned with cracks in homogeneous bodies. A survey of these investiga- 
tions can be found in recent articles by Hiorns and Venables [2,31. 

The propagation of cracks in the region of a cemented joint differs 
qualitatively from the propagation of cracks in homogeneous bodies. Let 
us stop with this distinction, assuming here and in the future that a 
plane deformation takes place. 

In the homogeneous material the evolution of a crack proceeds in the 
following manner. As the load increases, which tends to enlarge the 
crack, the tip of the crack initially remains immobile. Thereby the dis- 
tribution of the forces of cohesion acting between opposite sides of a 
crack in a small terminal region, and the form of the crack in this 
region is changed. This change ceases at the instant the quaSiStatiC 
(i.e. mobile equilibrium) advancement of the tip of the crack begins. 
If such an advancement is possible, then it proceeds in a direction in- 
suring local symmetry. i.e. only normal stresses act in the terminal 
region, symmetrically distributed relative to the direction of 
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propagation. The form of the crack and the distribution of forces of 
cohesion in the terminal region of the quasistatically advancing 
terminus of the crack no longer depend on the surface parameters, but 
are determined only by the properties of the material. The tip region 
becomes autonomous. 

Let us now consider a crack found at the cemented interface between 
two elastic homogeneous materials. If the strength of the cemented joint 
is sufficiently great, the crack will not proceed along this surface, 
but will be propagated deep into one, or simultaneously into two. 
cemented bodies in conformity with the propagation of a crack in homo- 
geneous materials. 

Of fundamental interest is the consideration of a very different 
kind of case; that is, when the strength of the cemented joint is rela- 
tively small. The crack will then be propagated along the surface of 
the cemented joint and its development will be completely different. In 
the process of quasistatic advancement. the terminus region of such a 
crack already has no local symmetry because the terminus of the crack 
advances along a Rredetermined course - the border of the cemented 
joint - which is independent of the manner of applying the load. Due to 
the differences in the properties of the cemented materials, the oppo- 
site sides of the crack may bulge and be superimposed on one another, 
forming small areas of contact. The reactions acting on these small 
area8 will be added to other acting forces and influence the extension 
of the crack. It is also characteristic of the case of cracks propagat- 
ing along the surface of the cemented joint between different materials 
that the action of a pure tension across the crack, or a pure shear 
along the crack in the continuous portion of the solid body, will in- 
duce both tangential and normal stresses in both cases. 

The differences pointed out do not allow for a simple formal trans- 
fer of the methods of the theory of cracks in homogeneous materials to 
the case of cracks advancing along the surface of a cemented joint. 

In the present article, with the aid of a suitable extension of the 
methods of the theory of cracks in homogeneous materials, the condition 
of equilibrium of a crack is developed which can advance only over the 
surface of a cemented joint, and the method for determining the advance- 
ment of the terminal locations of the crack is shown. 

1. The fnvestipatlon of the field of stresses and displacemeats in 
the vicinity of the tenfnas of a linear cat. Let us assume that the 
boundary of the cemented joint is rectilinear, coinciding with the P 
axis, and the cut extending along it from x = 0 to x = 1 is loaded by 
distributed stresses over its sides; no other loads are present. The 
cemented bodies will be assumed infinite; their elastic constants will 
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be designated by the indices 1 and 2 for y > 0 and y < 0 respectively. 
For y > 0, corresponding to equations by Muskhelishvili [41, we have for 
the stresses a,, uy and -rVy, and for the displacements u and v. the 
following: - J IJ 

o, + uy = 4 Re @ (z), oU - iTzu = @ (z) + Q (3 + (z - 

-- 
x1 aJ (2) - Q (i) - (2 - 2) w (2) 

z)aqT) 
(1.1) 

where CI is the shear modulus, K = 3 - 4v, v is Poisson’s ratio and 
z = x + iy. 

Let us consider the problem which is a particular case of one of the 
problems investigated by Cherepanov in [51, and independently, but at a 
later time, by Erdogan [Sl. The solution of this problem for y > 0 has 
the form 

F, = & * p+ (4 
s 

- P- (t) &, F, zzz --!- 
t-z 2niZ (z) 

f (t) ,“_II ,+ ‘O) dt + iC 1 t-1 
0 0 

z tz) = ,‘I~-iP tz _ l)‘iz+iP, lim [Z (2)/z] = 1 
z-K0 

where 

nJ-h+P2% 

pz + w2 ' 

c= 

f = p2 (Xl 4- 1) P+ It Plb2 + 1) P- 

P2 +w2 

, p* = (uv - iz ) I = xy L x+io (1.3) 

The quantities X and Y represent the components of the resultant 
forces applied to the surfaces of the cut. The solution for y < 0 is de- 
rived from the reduced solution with the aid of obvious redesignations. 
From the written-out solution, in the vicinity of the terminus of the 
cut x = 0, with an accuracy of up to an infinitesimal of higher order, 
we get the following equation: 

[u + iv] = M 1/G (&) ip {(I? - 2fiA) - $4 + 26B)) (1.4) 

where, on the left, stands the difference of the displacement vectors 
of the upper and lower sides of the cut at corresponding points, M is 
some positive constant remaining finite as p approaches 0; the quanti- 
ties A and B are expressed by the applied stresses 
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From (1.4) it follows that the differences of the longitudinal and 
lateral displacements of the sides of the cut for A2 + B2 # 0 is repre- 
sented by an oscillating function. For x - (212) the exponent in (1.4) 
approaches unity. As n decreases from I/2 to 0, it becomes purely 
imaginary for the first time for 

Here and subsequently it is assumed that @ > 0. This can always be 
achieved by correspondingly numbering the different boundaries of the 
semi-spaces. It is easy to demonstrate that, from the other side, 
p 4 (In ~,)/21’r. Since v >O is always true, then for all possible values 
of p the quantity x*< 10’4&. This inequality permits the use of equation 
(1.5) in the interval of the variable x including x *‘ 

In the interval 0 < II < x the vector [IS + iv3 for A2 + B2 f 0 goes 

through an infinite number o? revolutions. Such an oscillating character 
of the solution in the vicinity where the shift of the boundary condi- 
tion takes place at the border of the cut between different bodies was 
noted long ago by Abraaov [?I. 

From the solutions of (1.1) to (1.3) it also follows that in a con- 
tinuous body on the extension of the cut near its terminus, 1: = 0 

(1.7) 

Here z=x=-S, s-+0. From (l.?) it follows that for A2 +B*# 0 
the stresses at the extension of the cut are infinitely large and change 
the sign an infinite number of times. 

2. Derfvatfon of the ecnllibrium coadftion for the tip of P crack. 

By considering the elastic field in the immediate vicinity of the tip 
of a curvilinear crack. the boundary of the cut can be considered to be 
linear, and the bodies separated by it are in- Y 
finite. From this it follows that the distribu- / H-W *r 
tion of displacements of the sides of the crack / \ 

\ x 
and the stresses on the extension of the crack 
in the small terminal region will be the same as 

~ 

\ 

in the immediate vicinity of the terminus of a 
linear semi-infinite cut. In the formulas (1.4) Fig. 1. 
and (1.7), transferring to asymptotic expressions for 1 - m, we find 
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that in this vicinity we obtain 

:u + iv] = M -fi + @ ( 1 {(B - 33‘4) - i (A + 2PB)) 

1 
ay - iZxzl = - - $ 

Ifi ( 1 
@ (A + iB) 

Here the x-axis is directed along the tangent to the length of the 
crack, the y-axis is normal to it, the length L is related to the geo- 
metrical characteristics of the problem, the values A and B depend upon 
the loads acting on it (in the general case, not according to formula 
(1.5)). 

In Section 1 it was noted that, approaching the tip of the crack, the 
vector, equal to the difference of the displacement vectors of the upper 
and lower sides, goes through an infinite number of revolutions. This 
indicates that, in an infinite number of points, the upper side appears 
to be under the lower one. Such a physically impossible case of inter- 
penetration of regions divided by a crack was also previously noted for 
cracks in homogeneous materials [81. By analyzing the structure of the 
crack near its tip, it was shown that this structure has the form de- 
picted in Fig. 1, where the upper side is located underneath the lower 
one. The stresses at the extension of such a ‘crack” appear to be in 
compression and they hinder its extension into the depth of the body. On 
the contrary, they bar its joining until the moment the small area of 
contact from x = 0 to x = XI is formed. The separation ZI is determined 
from the condition of smoothness of the displacement of opposite sides 
of the crack, or by the finiteness of the stresses. This condition, first 
introduced by Khristianovich [91, and later proved by Barenblatt [i01, 
using the calculus of variations, is fundamental to the theory of cracks. 

In the case under discussion, for A2 + B2 f 0 in the vicinity of the 
tip of a crack, there are an infinite number of places in which it would 
be necessary for interpenetration of the mediums to occur. For this 

!I 

k -. X 
WC 

Fig. 2. 

reason, generally speaking, several small areas of 
contact may be formed so that the crack in the 
vicinity of the terminus will have the appearance 
depicted in Fig. 2. The reaction forces will act 
on these small areas. Further, the forces of 
cohesion will act in the terminus region of the 
crack. As a result, the values of A and B will be 
combined from the values of A,, and Bo, calculated 
without considering the reactive forces and forces 

of cohesion, and the quantities A’ and B’, taking into account the 
action of these forces 

A = A, + A’, B = B, + B’ (2.2) 
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In the theory of cracks of homogeneous materials, the condition of 
mobile equilibrium of a given point on the contour of a crack is derived 
by finding the virtual work and setting it equal to zero. This was done 
in [lo, 111. 

We will proceed analogously in the case under consideration. 

Let us separate the elastic field into two parts: the field which 
originates from the applied loads in the absence of cracks, and the 
field created by the crack with the load in the form of stresses, super- 
imposed on those which the first field produced at the location of the 
crack. For a variation of the location of the terminus of the crack the 
first field will not change and, consequently, does not appear in the 
expression for work. This expression will completely determine the 
second field. Thus. for the calculation of virtual work, we may consider 
that the entire load is applied to the upper crack and that there are 
no other loads. The virtual displacement of the tip of the crack along 
the boundary of the cemented joint Sh will be assumed so small that in 
the investigation of the region affected by variations, this boundary 
can be considered to be rectilinear, and the mediums divided by it to 
be infinite. In this way the problem leads to the calculation of virtual 
work, which is produced by a virtual displacement of a semi-infinite cut 
along the rectilinear boundary between two semi-spaces. 

Each point of the cut, as a result of a virtual displacement, is 
shifted a distance 6h. Thus, for example, the force p+(x)6h acts on the 
upper side at the point x. The displacement at this point is changed to 
VQa+ + iv+)/&] dr. As a result, the summation of work 610~ is carried 
out over the upper side 

co 00 

iW = - 6h 
Si 

!?!I?? z,!,’ 
ax 

+ g Ok+) dx = a$+iag)dx (2.3) 

0 0 

The minus sign is placed in front of the integral bpause, on the 
upper side, the positive direction of the stresses rlxy , oyt is opposite 
to the positive directions of the X- and y-axes, respectively. In this 
expression it is necessary to substitute the asymptotic solution, ob- 
tained from (1.1) to (1.3) by passing to the limit 1 - a. As a result, 
we obtain 

&w+ = - Im Gn$.l[pz(x1+ 1) + pl(Xz+ I)] 

(p2 (xl+l) f '+;t)p+ (+y-ip&dx + 
Xl + 1 

+ pl (x2 + 1) [ ( ‘-:?I (x) (f )‘“-@ dt dx - 

0 

~0 
co 

P- (1) P+ (x) 
t-x (2.4) 

0 

Designating the first integral in (2.4) by J1. we convert it into 



1474 R.L. Salganik 

the following form: 

(2.5) 

Similarly, for the second interval. we find 

:o -_ 

($)iP &jr (2.6) 

The expression for the work on the lower side SUJJ is obtained from 
(2.4) by substituting K~ for K~, CI~ for pl, p+ for p- and p- for T+. 
Combining the expressions for 6~0~ and &I-, we find, taking into account 
(2.5) and (2.6)) that the total work 6w is equal to 

(2.7) 

where L, is an arbitrary quantity with the dimension of a length. The 
work 6r is independent of this quantity. This is immediately obvious if 
the expression for the modulus is given explicitly. 

Assuming in (1.5) 1 = L, and changing to the asymptotic expression 
for L, - a, after substituting this expression into (2.7), we obtain 

(2.8) 

The condition of equilibrium for the given tip of the crack is con- 
tained in the equation 81~ = 0. Assuming in (2.8) that &a = 0, and using 
the notation given in (2.2), we obtain 

A z A, + R’ = 0, BEB,+B’=O (2.9) 

From these equalities and formulas (2. l), it follows that if the tip 
of the crack under consideration is in equilibrium, then in the small 
terminal region the opposite sides of the crack, as in the case of a 
crack in a homogeneous material, are smoothly and evenly displaced. As 
a result of this, the stresses at the continuation of the crack become 
finite. In this way, taking account of the possible occurrence of small 
areas of contact, the structure of a crack in the vicinity of its mobile 
equilibrium tip has the form depicted in Fig. 3. 

3. The conditions for the determination of the location of the tip 
of a crack. The foundation of the current theory of cracks is stated in 
two hypotheses [121 : the hypothesis of the smallness of the tip region 
of the crack compared to the overall macroscopic dimensions of the 
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problem; and the hypothesis of the autonomy of this terminal region. 
Autono~ is understood in the sense in which it was explained in the 
introduction. 

In the case under consideration, the terminal region is the one 
where the forces of interaction (the forces of cohesion and the forces 
of reaction) of the opposite sides of the crack are distributed. If the 
external loads are distributed so that, by calculating the displacements 
using (1.1) to (1.31, the locations where the interpenetration of the 
media would occur, they are concentrated only in the vicinity of the 
crack, while in the main section of the crack such places are not found, 
then the small areas of contact may be found only in the vicinity of 
the tip of the crack. The size of the region where these small areas are 
distributed approaches zero with the disappearance of the difference in 
the properties of the media, between which the crack is located. In the 
case of a rectilinear crack of length 1 in an infinite body, the size 
of each of these regions, as was shown, never exceeds 10W41. Thus, dis- 
regarding the fact that the region of action of the forces of cohesion, 
on account of the specific nature of these forces, is always small, we 
may consider that the terminal region is also small, i.e. the first 
hypothesis is valid. 

The first hypothesis. The terminal region, where the forces of inter- 
action of opposite sides of the crack are distributed, is small in com- 
parison to the characteristic dimensions. 

This hypothesis can be used at least until the size of the crack is 
of an order of magnitude less than, or equal to, the remaining chsracter- 
istic dimensions, which are independent of it. 

It is impossible, in the case under consideration, to accept the 
second hypothesis (which deals with the autono~ of a terminal region) 
in the same form in which it was formulated for cracks in homogeneous 
materials, because, with the movement of the crack over the surface of 
the cemented joint in the terminal regions, there is no local symmetry. 

The location of the given tip of the crack is determined by the 
elastic field produced by the forces of interaction distributed in the 
terminal region. This field, in its turn. is uniquely determined by the 
quantities A’ and B’. Let us assume that the applied load is changed, 
depending on some parameter h in such a way that the given tip of a 
crack quasistatically extends deep into the body. To each value of the 
parameter h there is a corresponding unique location of this tip and 
unique values of the quantities A’ and B’. Hence, with this load dis- 
tribution 

F(A’, B’) = 0 



1476 R.L. Salganik 

The form of the function, defined by (3.1). can be varied depending 
mainly upon how the applied loads are changed. This function in general 
may not exist if the variations of the loads de- 
pend not on one but. for example, on two para- 
meters. The assumption that for mobile- 
equilibrium (quasistatic movement) of the tip of 
the crack. the function (3.1) exists, and its 
form does not depend upon the applied forces, is + 

the natural generalization for accepting auto- Fig. 3. 

nomy in the case being considered. In the same 
way. the second hypothesis can be accepted in the generalized form given 
below. 

The second hypothesis (the generalized hypothesis of autonomy). If 
the tip of the crack that can advance only over the surface of the 
cemented joint between two elastic materials if found to be in a state 
of mobile equilibrium, then 

F (A’, B’) = 0 (3.2) 

where the function, defined by (3.2), exists and does not depend upon 
the external loads. This function is determined by the properties of 
the cemented materials, the cement itself and their thermodynamic state. 

IRe will show that, in the case when materials between which the crack 
is propagated are different, the form of this function is determined in 
a unique way. From (2. l), we have 

A’ f iB’ = - lim (ol/’ - izrv 
S-Y) 

where o ’ and -r 
XY 

’ are the stresses at the continuation of the crack, 
caused yby the forces of interaction. In formula (3.3) all the quanti- 
ties. except L depend on the properties of the elastic field in the 
vicinity of the tip of the crack. The geometrical parameter L, in 
general, depends on the applied loads. If the generalized hypothesis of 
autonomy is assumed, then the left-hand side of (3.2) clearly must not 
depend on L. It is easy to see with the aid of (3.3) that the only com- 
binations of A: and B’ which clearly do not depend upon L are AS2 + B’2 

and any other function of this quantity. As a result, condition (3.2) 

obviously must have the form 

A’2 + Bf2 = 0% (3.4) 

where D is a constant quantity, depending on the properties of the 
cement, of the cemented materials, its thermodynamic state, etc., and 
is not dependent on the applied loads. Combining (3.4) and (2. S), we 
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see that the assumption of autonomy leads to the necessity for the con- 
stancy of work, produced only by the forces of interaction, associated 
with the formation of a unit length of the crack. 

The position of the mobile-equilibrium terminals of the crack is 
determined from the condition of autonomy (3.4) and the conditions of 
equil ibr ium (2.9). The problem concerning the evolution of the crack 
from the initial cut for the case under discussion is formulated in the 
same manner as in the theory of cracks in homogeneous materials. 

The author is grateful to G.I. Barenblatt for formulating the prob- 
lem and directing the work. The author expresses his sincere apprecia- 
tion to R.V. Gal’ dstein for his assistance in the work. 
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